VERTEX DEGREE OF CARTESIAN PRODUCT OF INTUITIONISTIC FUZZY GRAPH

T.Pathinathan ${ }^{1}$, J.Jesintha Rosline ${ }^{2}$
P.G. and Research Department of Mathematics, Loyola College, Chennai - 34, India.
${ }^{1}$ Email: pathimathsloyola@gmail.com; ${ }^{2}$ Email: jesi.simple@gmail.com

Abstract

A new intuitionistic fuzzy graph can be generated by the use of the cartesian product of two intuitionistic fuzzy graphs. Degree of vertices in an intuitionistic fuzzy graph gives a complicated picture when we consider the cartesian product for intuitionistic fuzzy graphs with large number of vertices. We propose a methodology to find the degree of vertices for the cartesian product of intuitionistic fuzzy graph from the degree of vertices of two intuitionistic fuzzy graphs under certain conditions. This methodology simplifies the process and the outcome of the newly generated intuitionistic fuzzy graphs. These concepts are analyzed through suitable illustrations.

KEYWORDS - Intuitionistic fuzzy graph, degree of vertex in IFG, cartesian product.

1 Introduction

A mathematical frame work to describe the phenomena of uncertainty in real life situation has been suggested by Zadeh in 1965[9]. The theory of fuzzy graphs was independently developed by Rosenfeld[11], yeh and bang [10] in 1975. In 1983, Atanassov[1] introduced the concept of intuitionistic fuzzy sets as a generalization of fuzzy sets[9]. Fuzzy set give the degree of membership of an element in the given set, while intuitionistic fuzzy set gives both the degree of membership and non membership which are more or less independent from each other. The only condition is that the sum of these two degrees should not exceed 1. In [3] Karunambigai M. G. and Parvathi R. introduces intuitionistic fuzzy graph as a special case of Atanassov's IFG. The operations on IFG was introduces by R. Parvathi, M. G. Karunambigai and K. Atanassov [4]. Degree, Order and Size in IFG was introduced by A. Naggor Gani and S. Shajitha Begum[5]. The degree of a vertex in some fuzzy graphs was introduced by A. Nagooor Gani and K. Radha[2]. In this paper, we find the degree of vertices for the cartisian product of intuitionistic fuzzy graph from the degree of vertices of two intuitionistic fuzzy graph under certain conditions. First we go through some of the basic definitions in intuitionistic fuzzy graphs.

2 PRELIMENARIES

2.1 Definition

An IFG is of the form G : (V, E) where
where

$$
\mathrm{d}_{\mu}(\mathrm{v})=\sum_{\mathrm{u} \neq \mathrm{v}} \mu_{2}(\mathrm{u}, \mathrm{v})
$$

and
$\mathrm{d}_{\gamma}(\mathrm{v})=\sum_{\mathrm{u} \neq \mathrm{v}} \gamma_{2}(\mathrm{u}, \mathrm{v})$.

2.3 Definition

The Cartesian product of two IFGs G_{1} and G_{2} is defined as a IFG $G=G_{1} \times G_{2}:\left(V, E^{\prime \prime}\right)$ where
$\mathrm{V}=\mathrm{V}_{1} \times \mathrm{V}_{2}$ and
$\mathrm{E}^{\prime \prime}=\left\{\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) / \mathrm{u}_{1}=\mathrm{v}_{1} \& \mathrm{u}_{2} \mathrm{v}_{2} \in \mathrm{E}_{2}\right.$ or $\left.u_{2}=v_{2} \& u_{1} v_{1} \in E_{1}\right\}$
with
$\left\langle\left(\mu_{1} \times \mu_{1}^{\prime}\right),\left(\gamma_{1} \times \gamma_{1}^{\prime}\right)\right\rangle\left(u_{1}, u_{2}\right)=$
$\left\langle\min \left(\mu_{1}\left(u_{1}\right), \mu_{1}^{\prime}\left(u_{2}\right)\right), \max \left(\gamma_{1}\left(u_{1}\right), \gamma_{1}^{\prime}\left(u_{2}\right)\right)\right\rangle$
for every $\left(u_{1}, u_{2}\right) \in V$
and
$\left\langle\left(\mu_{2} \times \mu_{2}^{\prime}\right),\left(\gamma_{2} \times \gamma_{2}^{\prime}\right)\right\rangle\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)=$
$\left\{\begin{array}{l}\left\langle\min \left(\mu_{1}\left(u_{1}\right), \mu_{2}^{\prime}\left(u_{2}, v_{2}\right)\right),\right. \\ \left.\text { max }\left(\gamma_{1}\left(u_{1}\right), \gamma_{2}^{\prime}\left(u_{2}, v_{2}\right)\right)\right\rangle \\ \text { if } u_{1}=v_{1} \&\left(u_{2}, v_{2}\right) \in E_{2} \\ \min \left(\mu_{1}^{\prime}\left(u_{2}\right), \mu_{2}\left(u_{1}, v_{1}\right)\right), \\ \left.\max \left(\gamma_{1}^{\prime}\left(u_{2}\right), \gamma_{2}\left(u_{1}, v_{1}\right)\right)\right\rangle \\ \langle 0,0\rangle \text { otherwise. } \\ \text { if } u_{2}=v_{2} \&\left(u_{1}, v_{1}\right) \in E_{1}\end{array}\right.$

3. Degree of vertices in cartesian PRODUCT OF IFG

$$
\begin{align*}
& d_{G_{1} \times G_{2}}\left(u_{1}, u_{2}\right)=\left\langle d_{\mu_{2} \times \mu_{2}^{\prime}}\left(u_{1}, u_{2}\right), d_{\gamma_{2} \times \gamma_{2}^{\prime}}\left(u_{1}, u_{2}\right)\right\rangle \\
& =\left\langle\sum_{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \in \mathrm{E}}\left(\mu_{2} \times \mu_{2}^{\prime}\right)\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right), \sum_{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right) \in E}\left(\gamma_{2} \times \gamma_{2}^{\prime}\right)\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right)\right\rangle \\
& =\left\langle\sum_{u_{1}=v_{1},\left(u_{2}, v_{2}\right) \in E_{2}} \mu_{1}\left(u_{1}\right) \wedge \mu_{2}^{\prime}\left(u_{2}, v_{2}\right), \sum_{u_{1}=v_{1},\left(u_{2}, v_{2}\right) \in E_{2}} \gamma_{1}\left(u_{1}\right) v \gamma_{2}^{\prime}\left(u_{2}, v_{2}\right)\right\rangle+ \\
& \left\langle\sum_{u_{2}=v_{2},\left(u_{1}, v_{1}\right) \in E_{1}} \mu_{1}^{\prime}\left(u_{2}\right) \wedge \mu_{2}\left(u_{1}, v_{1}\right), \sum_{u_{2}=v_{2},\left(u_{1}, v_{1}\right) \in E_{1}} \gamma_{1}^{\prime}\left(u_{2}\right) \wedge \gamma_{2}\left(u_{1}, v_{1}\right)\right\rangle . \tag{1}
\end{align*}
$$

3.1 Theorem

Let $\mathrm{G}_{1}:\left\langle\left(\mathrm{v}_{\mathrm{i}}, \mu_{1}, \gamma_{1}\right),\left(\mathrm{e}_{\mathrm{ij}}, \mu_{2}, \gamma_{2}\right)\right\rangle$ and $\mathrm{G}_{2}:\left\langle\left(\mathrm{v}_{\mathrm{i}}, \mu_{1}^{\prime}, \gamma_{1}^{\prime}\right),\left(\mathrm{e}_{\mathrm{ij}}, \mu_{2}^{\prime}, \gamma_{2}^{\prime}\right)\right\rangle$ be two IFGs. If
$\mu_{1} \geq \mu_{2}^{\prime}, \gamma_{1} \leq \gamma_{2}^{\prime}$ and $\mu_{1}^{\prime} \geq \mu_{2}, \gamma_{1}^{\prime} \leq \gamma_{2}$, then $\mathrm{d}_{\mathrm{G}_{1} \times \mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=\mathrm{d}_{\mathrm{G}_{1}}\left(\mathrm{u}_{1}\right)+\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{u}_{2}\right)$.

Proof:

From (1),

$$
\begin{aligned}
& d_{G_{1} \times G_{2}}\left(u_{1}, u_{2}\right)= \\
& \left\langle\sum_{u_{1}=v_{1},\left(u_{2}, v_{2}\right) \in E_{2}} \mu_{1}\left(u_{1}\right) \wedge \mu_{2}^{\prime}\left(u_{2}, v_{2}\right), \sum_{u_{1}=v_{1},\left(u_{2}, v_{2}\right) \in E_{2}} \gamma_{1}\left(u_{1}\right) \vee \gamma_{2}^{\prime}\left(u_{2}, v_{2}\right)\right\rangle+ \\
& \left\langle\sum_{u_{2}=v_{2},\left(u_{1}, v_{1}\right) \in E_{1}} \mu_{1}^{\prime}\left(u_{2}\right) \wedge \mu_{2}\left(u_{1}, v_{1}\right), \sum_{u_{2}=v_{2},\left(u_{1}, v_{1}\right) \in E_{1}} \gamma_{1}^{\prime}\left(u_{2}\right) \wedge \gamma_{2}\left(u_{1}, v_{1}\right)\right\rangle \\
& =\left\langle\sum_{u_{1}=v_{1}} \mu_{2}^{\prime}\left(u_{2}, v_{2}\right), \sum_{u_{1}=v_{1}} \gamma_{2}^{\prime}\left(u_{2}, v_{2}\right)\right\rangle+\left\langle\sum_{u_{2}=v_{2}} \mu_{2}\left(u_{1}, v_{1}\right), \sum_{u_{2}=v_{2}} \gamma_{2}\left(u_{1}, v_{1}\right)\right\rangle \\
& =d_{G_{2}}\left(u_{2}\right)+d_{G_{1}}\left(u_{1}\right) .
\end{aligned}
$$

3.1 Example

$$
\begin{aligned}
d_{G_{l}}\left(u_{1}\right)+d_{G_{2}}\left(u_{2}\right) & =(0.2,0.4)+(0.1,0.3) \\
& =(0.3,0.7)
\end{aligned}
$$

3.2 Theorem

$$
\text { If } \quad \mathrm{G}_{1}:\left\langle\left(\mathrm{v}_{\mathrm{i}}, \mu_{1}, \gamma_{1}\right),\left(\mathrm{e}_{\mathrm{ij}}, \mu_{2}, \gamma_{2}\right)\right\rangle \text { and }
$$ $\mathrm{G}_{2}:\left\langle\left(\mathrm{v}_{\mathrm{i}}, \mu_{1}^{\prime}, \gamma_{1}^{\prime}\right),\left(\mathrm{e}_{\mathrm{ij}}, \mu_{2}^{\prime}, \gamma_{2}^{\prime}\right)\right\rangle$ are two IFGs such that $\mu_{1} \leq \mu_{2}^{\prime} \& \gamma_{1} \geq \gamma_{2}^{\prime}$, then $\mu_{1}^{\prime} \geq \mu_{2} \& \gamma_{1}^{\prime} \leq \gamma_{2}$ and vice versa.

Proof:

By the definition of intuitionistic fuzzy graphs,

$$
\begin{aligned}
& \mu_{2}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \leq \mu_{1}\left(\mathrm{v}_{\mathrm{i}}\right) \wedge \mu_{1}\left(\mathrm{v}_{\mathrm{j}}\right) \text { and } \\
& \gamma_{2}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right) \leq \gamma_{1}\left(\mathrm{v}_{\mathrm{i}}\right) \vee \gamma_{1}\left(\mathrm{v}_{\mathrm{j}}\right)
\end{aligned}
$$

Therefore all $\mu_{2} \leq \max \mu_{1}$ and $\min \mu_{2} \leq \mu_{1}$; also all $\gamma_{2} \geq \min \gamma_{1}$ and $\max \gamma_{2} \geq \gamma_{1}$
Also, since $\mu_{1} \leq \mu_{2}^{\prime}, \max \mu_{1} \leq \min \mu_{2}^{\prime}$; and Since $\gamma_{1} \geq \gamma_{2}^{\prime}$, min $\gamma_{1} \geq \max \gamma_{2}^{\prime}$.
Hence $\quad \mu_{2} \leq \max \mu_{1} \leq \min \mu_{2}^{\prime} \leq \mu_{1}^{\prime} \quad$ and $\gamma_{2} \geq \min \gamma_{1} \geq \max \gamma_{2}^{\prime} \geq \gamma_{1}^{\prime}$.
Thus $\mu_{1}^{\prime} \geq \mu_{2} \& \gamma_{1}^{\prime} \leq \gamma_{2}$

3.3 Theorem

Let $\mathrm{G}_{1}:\left\langle\left(\mathrm{v}_{\mathrm{i}}, \mu_{1}, \gamma_{1}\right),\left(\mathrm{e}_{\mathrm{ij}}, \mu_{2}, \gamma_{2}\right)\right\rangle$ and $\mathrm{G}_{2}:\left\langle\left(\mathrm{v}_{\mathrm{i}}, \mu_{1}^{\prime}, \gamma_{1}^{\prime}\right),\left(\mathrm{e}_{\mathrm{ij}}, \mu_{2}^{\prime}, \gamma_{2}^{\prime}\right)\right\rangle$ be two IFGs.
(i) If $\mu_{1} \leq \mu_{2}^{\prime} \& \gamma_{1} \geq \gamma_{2}^{\prime}$ and $\mu_{1} \& \quad \gamma_{1}$ are constant functions say C_{1} and C_{2} respectively. Then $d_{G_{1} \times G_{2}}\left(u_{1}, u_{2}\right)=\mathrm{d}_{G_{1}}\left(\mathrm{u}_{1}\right)+\left\langle\mathrm{c}_{1} d_{G_{2}^{*}}\left(u_{2}\right), \mathrm{c}_{2} d_{G_{2}^{*}}\left(u_{2}\right)\right\rangle$
(ii) If $\mu_{1}^{\prime} \leq \mu_{2} \& \gamma_{1}^{\prime} \geq \gamma_{2}$ and $\mu_{1}^{\prime} \& \quad \gamma_{1}^{\prime}$ are constant functions say C_{1} and C_{2} respectively. Then $d_{G_{1} \times G_{2}}\left(u_{1}, u_{2}\right)=\mathrm{d}_{G_{2}}\left(\mathrm{u}_{2}\right)+\left\langle\mathrm{c}_{1} d_{G_{1}^{*}}\left(u_{1}\right), \mathrm{c}_{2} d_{G_{1}^{*}}\left(u_{1}\right)\right\rangle$

Proof:

(i) we have $\mu_{1} \leq \mu_{2}^{\prime} \& \gamma_{1} \geq \gamma_{2}^{\prime}$. Hence by theorem 2, $\mu_{l}^{\prime} \geq \mu_{2} \& \gamma_{l}^{\prime} \leq \gamma_{2}$.
From (1),

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{G}_{1} \times \mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)= \\
& \left\langle\sum_{\mathrm{u}_{1}=\mathrm{v}_{1},\left(\mathrm{u}_{2}, v_{2}\right) \in \mathrm{E}_{2}} \mu_{1}\left(\mathrm{u}_{1}\right) \wedge \mu_{2}^{\prime}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right), \sum_{\mathrm{u}_{1}=\mathrm{v}_{1},\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right) \in \mathrm{E}_{2}} \gamma_{1}\left(\mathrm{u}_{1}\right) \vee \gamma_{2}^{\prime}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)\right\rangle+ \\
& \left\langle\sum_{\mathrm{u}_{2}=v_{2},\left(\mathrm{u}_{1}, v_{1}\right) \in \mathrm{E}_{1}} \mu_{1}^{\prime}\left(\mathrm{u}_{2}\right) \wedge \mu_{2}\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right), \sum_{\mathrm{u}_{2}=\mathrm{v}_{2},\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right) \in \mathrm{E}_{1}} \gamma_{1}^{\prime}\left(\mathrm{u}_{2}\right) \wedge \gamma_{2}\left(\mathrm{u}_{1}, \mathrm{v}_{1}\right)\right\rangle \\
& =\left\langle\sum_{u_{2} v_{2} \in E_{2}} \mu_{l}\left(u_{1}\right), \sum_{u_{2} v_{2} \in E_{2}} \gamma_{l}\left(u_{1}\right)\right\rangle+ \\
& \left\langle\sum_{\left(u_{1}, v_{l}\right) \in E_{l}} \mu_{2}\left(u_{1}, v_{l}\right), \sum_{\left(u_{1}, v_{l}\right) \in E_{l}} \gamma_{2}\left(u_{1}, v_{l}\right)\right\rangle
\end{aligned}
$$

$$
=\left\langle\sum_{u_{2} v_{2} \in E_{2}} \mathrm{c}_{1}, \sum_{u_{2} v_{2} \in E_{2}} \mathrm{c}_{2}\right\rangle+
$$

$$
\left\langle\sum_{\left(u_{1}, v_{l}\right) \in E_{l}} \mu_{2}\left(u_{1}, v_{l}\right), \sum_{\left(u_{1}, v_{l}\right) \in E_{l}} \gamma_{2}\left(u_{1}, v_{l}\right)\right\rangle
$$

Since $\mu_{1} \& \gamma_{1}$ are constant functions

$$
=\left\langle\mathrm{c}_{1} d_{G_{2}^{*}}\left(u_{2}\right), \mathrm{c}_{2} d_{G_{2}^{*}}\left(u_{2}\right)\right\rangle+\mathrm{d}_{G_{I}}\left(u_{1}\right)
$$

(ii) we have $\mu_{1}^{\prime} \leq \mu_{2} \& \gamma_{1}^{\prime} \geq \gamma_{2}$. Hence by theorem 2, $\mu_{1} \geq \mu_{2}^{\prime} \& \gamma_{1} \leq \gamma_{2}^{\prime}$
From (1),

$$
\begin{aligned}
& \mathrm{d}_{\mathrm{G}_{1} \times \mathrm{G}_{2}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)= \\
& \left\langle\sum_{u_{1}=v_{1},\left(u_{2}, v_{2}\right) \in \mathrm{E}_{2}} \mu_{1}\left(\mathrm{u}_{1}\right) \wedge \mu_{2}^{\prime}\left(u_{2}, v_{2}\right), \sum_{u_{1}=v_{1},\left(u_{2}, v_{2}\right) \in \mathrm{E}_{2}} \gamma_{1}\left(u_{1}\right) \vee \gamma_{2}^{\prime}\left(u_{2}, v_{2}\right)\right\rangle+ \\
& \left\langle\sum_{u_{2}=v_{2},\left(u_{1}, v_{1}\right) \in E_{1}} \mu_{1}^{\prime}\left(u_{2}\right) \wedge \mu_{2}\left(u_{1}, v_{1}\right), \sum_{u_{2}=v_{2},\left(u_{1}, v_{1}\right) \in E_{1}} \gamma_{1}^{\prime}\left(u_{2}\right) \wedge \gamma_{2}\left(u_{1}, v_{1}\right)\right\rangle \\
& =\left\langle\sum_{\left(u_{2}, v_{2}\right) \in E_{2}} \mu_{2}^{\prime}\left(u_{2}, v_{2}\right), \sum_{\left(u_{2}, v_{2}\right) \in E_{2}} \gamma_{2}^{\prime}\left(u_{2}, v_{2}\right)\right\rangle \\
& +\left\langle\sum_{\left(u_{1}, v_{1}\right) \in E_{1}} \mu_{1}^{\prime}\left(u_{2}\right), \sum_{\left(u_{1}, v_{1}\right) \in E_{1}} \gamma_{1}^{\prime}\left(u_{2}\right)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle\sum_{\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right) \in \mathrm{E}_{2}} \mu_{2}^{\prime}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right), \sum_{\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right) \in \mathrm{E}_{2}} \gamma_{2}^{\prime}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)\right\rangle \\
& +\left\langle\mathrm{c}_{1} \mathrm{~d}_{\mathrm{G}_{1}^{*}}\left(\mathrm{u}_{1}\right), \mathrm{c}_{2} \mathrm{~d}_{\mathrm{G}_{1}^{*}}\left(\mathrm{u}_{1}\right)\right\rangle \\
& =\mathrm{d}_{\mathrm{G}_{2}}\left(\mathrm{u}_{2}\right)+\left\langle\mathrm{c}_{1} \mathrm{~d}_{\mathrm{G}_{1}^{*}}\left(\mathrm{u}_{1}\right), \mathrm{c}_{2} \mathrm{~d}_{\mathrm{G}_{1}^{*}}\left(\mathrm{u}_{1}\right)\right\rangle .
\end{aligned}
$$

3.2 REMARK

If $\mathrm{c}_{1}=\mathrm{c}_{2}$, then in theorem 3.3
(i) $d_{G_{1} \times G_{2}}\left(u_{1}, u_{2}\right)=\mathrm{d}_{G_{1}}\left(\mathrm{u}_{1}\right)+\mathrm{c} d_{G_{2}^{*}}\left(u_{2}\right)$ and
(ii) $d_{G_{1} \times G_{2}}\left(u_{1}, u_{2}\right)=\mathrm{d}_{G_{2}}\left(\mathrm{u}_{2}\right)+\mathrm{c} d_{G_{1}^{*}}\left(u_{1}\right)$

3.1 Example

Here, $\mathrm{d}_{\mathrm{G}_{1} \times \mathrm{G}_{2}}\left(\mathrm{u}_{2}, \mathrm{v}_{2}\right)=(1.4,2.5)$
$\mathrm{d}_{G_{I}}\left(\mathrm{u}_{2}\right)+\left\langle\mathrm{c}_{1} d_{G_{2}^{*}}\left(v_{2}\right), \mathrm{c}_{2} d_{G_{2}^{*}}\left(v_{2}\right)\right\rangle=(0.2,0.7)+\langle 0.4(3)+0.6(3)\rangle$

$$
=(1.4,2.5)
$$

4 Conclusion

Using the concepts of Intuitionistic fuzzy graph the vertex degree cartesion product of two IFG under some condition is defined in this paper. The result has been illustrated through some examples. When the product of two graphs is larger in structure these concepts will be helpful to analyze the vertex
degree without constructing the entire structure. Future work can be done to use this concept in the application of network analysis and pattern clustering.

References:

1. K. T. Atanassov, "Intuitionistic fuzzy sets", fuzzy sets and systems 20 (1986) 87-96.
2. A. Naggor Gani and K. Radha, "The degree of vertex in some fuzzy graphs", International Journal of Algorithms, Computing and Mathematics 2(3) (2009) 107-116.
3. M. G. Karunambigai and R. Parvathi, "Intuitionistic Fuzzy graphs", Proceedings of $9^{\text {th }}$ Fuzzy Days International Conference on Computational Intelligence, Advances in Soft computing: Computaional Intelligence, Theory and Applicaions, Springer - Verlag, 20 (2006) 139 - 150.
4. R. Parvathi, M. G. Karunambigai and K. Atanassov, "Operations on Intuitionistic Fuzzy Graphs", Proceedings of IEEE International Conference on Fuzzy Systems (FUZZ - IEEE), (2009) 1396-1401.
5. A. Naggor Gani and S. Shajitha Begum, "Degree, Order and Size in Intuitionistic fuzzy graphs", International Journal of Algorithms, Computing and Mathematics 3(3) (2010) 11-16.
6. A.Nagoorgani and M. Basheed Ahamed, "Order and size in fuzzy graphs", Bulletin of Pure and Applied Sciences, 22E(1) (2003) 145-148.
7. T.Pathinathan and J.Jesintha Rosline, "Characterization of fuzzy graphs into different categories using arcs in fuzzy graph", Journal of Fuzzy set valued analysis 2014 (2014) 1-6.
8. J.N.Mordeson and P.S.Nair, "Fuzzy Graphs and Fuzzy Hypergraphs", Physica verlag Publication, Heidelberg 1998, second edition 2001.
9. T.Pathinathan and J.Jesintha Rosline, "Double layered fuzzy graph", Annals of Pure and Applied Mathematics, 8(1) (2014) 135-143
10. L. A. Zadeh, "Fuzzy sets", Information control 8(1965)338-353.
11. R.T. Yeh and S. Y. Bang, "Fuzzy relations, fuzzy graphs and their application to clustering analysis, In fuzzy sets and their Application to cognitive and decision processes", L. A. Zadeh, Fu. K. S. Shimura M.Eds, Academic Press, New York, (1975) 125-149.
12. A. Rosenfeld, Fuzzy Graphs, in: L. A. Zadeh, Fu. K. S. Shimura(Eds), "Fuzzy sets and their application to cognitive and decision processes", Academic Press, New York, (1975) 77-95.
13. T.Pathinathan and J.Jesintha Rosline, "Matrix Representation of Double layered fuzzy graph", Annals of Pure and Applied Mathematics, 8(2) (2014) 51-58.

